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Abstract 

The paper is centered on an iterative procedure, which can be adopted for the structural analysis 
of elastic frames subjected to large displacements. In consequence, the equilibrium equations are 
written by considering the deformed configuration. 
The algorithm is based on the finite element method and essentially requires the solution of a 
sequence of linear elastic problems. At each iteration, the nodal displacements are updated 
according to the small displacement theory. Thus, the numerical approach discussed here makes 
use of the usual tools, which are typical of a simple linear elastic analysis. More specifically, after 
a preliminary analysis that is performed by considering a given set of external loads and by 
imposing equilibrium with respect to the initial configuration, the actual curvatures of the beam 
elements are determined and convenient equivalent nodal loads are computed. Next, a new mesh 
is generated in order to account for the deformed configuration of the framed structure and further 
incremental displacements are found by applying a set of nodal loads, which represent the 
difference between the given loads and the loads determined at the end of the previous analysis. 
The process continues until a convenient measure of the discrepancy between the displacements 
computed at the last iteration and the displacements estimated at the previous iteration is below a 
given tolerance. To this aim, it is possible to compare the Euclidean norms of the displacement 
vectors evaluated at two subsequent iterations. 
Some preliminary numerical tests on simple plane systems show that the approach presented in 
this paper does give results, which are consistent with analytical and/or experimental solutions. 
 
Keywords: Convergence, Discrete model, Finite element method, Framed structures, Linear-
elastic analysis, Iterative schemes, Large displacements, Structural instability. 
 
1. Introduction 

The topic of this paper is related to the field of structural systems, which are subjected to large 
displacements and must be studied by writing the equilibrium equations with reference to 
deformed configurations. The research work in this area has been quite extensive [1] and ranges 
from cable structures [2] to fluid-structure interaction [3, 4], from creep buckling of framed 
structures [5] to structural dynamics [6], from systems characterized by prismatic joints [7] to 
elastic-plastic structures [8]. 
More specifically, this work is concerned with the numerical analysis of framed structures, which 
have led to the development of several sophisticated analytical and numerical methods [9 – 13]. 
Here, we focus on a simple computer method, which essentially makes use of numerical tools, 
which were developed in the context of the small-displacement theory and have already been 
applied to space structures subjected to uniaxial stress states [14, 15]. 
This approach requires an iterative scheme that is based on the solution of a sequence of linear 
equations, which are derived by considering discrete finite element models in the context of the 
small-displacement theory. Namely, for a given set of input variables (external loads and/or 
imposed displacements), a solution is found by considering a traditional finite element mesh and 
by imposing the equilibrium with reference to the initial configuration, as typical of the small-

IJRDO-Journal of Mechanical And Civil Engineering                              ISSN: 2456-1479  

Volume-3 | Issue-12 | December,2017 2         



displacement theory. Next, the internal generalized forces (actual forces and moments) are 
computed by considering the present deformed configuration (i.e., in accordance with the large-
displacement theory) and an updated mesh is generated in order to take into account the new 
geometry of the structural system. At this stage, incremental displacements are computed (again 
on the basis of the small-displacement theory) by applying equivalent nodal loads, which represent 
the difference between the initial (given) loads and the nodal loads in equilibrium with the current 
internal generalized forces. The process continues until the algorithm eventually converges toward 
the correct solution. 
As discussed below, each new mesh is generated by exploiting traditional concepts that are 
currently adopted in the context of isoparametric finite elements and a convenient stiffness matrix 
has been developed with the aim of obtaining equivalent nodal loads that (for a given set of virtual 
displacements) do the same work, which is done by the internal generalized forces. 
So far, basic beam elements characterized by two nodes (i.e., six degrees of freedom) and suitable 
for the analysis of plane systems have been considered. However, despite this limitation and the 
extreme simplicity of the approach (in terms of theoretical fundamentals and computational tools), 
a few preliminary sample problems tend to show that accurate solutions can be found. 
 
2. The numerical model 
The first step requires a traditional mesh developed for plane frames by using beam elements. So 
far, only 2-node finite elements have been considered. For any given set of external loads and/or 
imposed displacements, a numerical solutions is immediately determined in accordance with the 
small-displacement theory. Namely, we easily find a displacement vector Uo, which gives the nodal 
generalized displacements, referred to a set of global coordinates x-y. 
With reference to the same global coordinates, the displaced position of each node will be given 
by the pair xn-yn. In addition, a rotation n shall be considered for every node. However, for each 
element, it is also possible to introduce a local axis ψ (with its origin in the first node), which 
passes through the second node. Since 2-node beam elements are characterized by cubic shape 
functions, typical configurations can be the ones depicted in Fig. 1. 
 

 
Figure 1:  Typical deformed configurations for 2-node beam elements 

 
On the basis of the same path of reasoning that is followed in the field of isoparametric elements, 
the coordinates χ(ψ) of each point of the geometrical axis of the beam can be found by introducing 
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cubic shape functions (the same functions utilized for displacements along the χ-direction). Thus, 
we can define a function χ(ψ) that depends on the coordinates χ1 and χ2 (which are obviously equal 
to zero in this context), and on the slopes 1 and 2. 
At this stage, for each element it is necessary to compute convenient generalized nodal loads that 
correspond to the displaced configuration. To this aim, we can start by determining the curvatures 
at the nodes, say c= χ"/(1+χ'2)2/3, where χ'=dχ(ψ)/dψ and χ"=d2χ(ψ)/dψ2. The product between these 
curvatures and the bending stiffness EI gives the moments at the end nodes (where E denotes 
Young’s modulus and I the moment of inertia). Then, the forces acting along the χ-direction can 
be found by imposing equilibrium. As to the forces acting along the ψ-direction, they can be 
computed by considering the strain ε at a point such as P in the upper part of Fig. 1, or the average 
strain εa at points such as P1 and P2 in the lower part of the same figure. Eventually, we can multiply 
ε or εa by the axial stiffness EA in order to obtain the required forces (where A represents the area 
of the cross section). 
Once we have the generalized nodal loads in each element, we can define the vector of the nodal 
loads concerned with the entire structure (say Q*) and determine the load vector ΔQ*, which 
represents the difference between Q* and the given loads (say Q). 
Now, it is possible to activate an iterative process in order to end up with a displaced configuration 
for which the difference ΔQ* becomes negligible. This aim can be achieved by following a 
procedure already developed for the analysis of structural systems, which are only subjected to 
axial forces [14, 15]. 
To do so, we need to generate an updated mesh that is representative of the current configuration. 
Therefore, we can make use of 2-node finite elements whose geometrical axes are defined by the 
functions χ(ψ) discussed above. Since the iterative process requires the solutions of structural 
problems according to the small-displacement theory, the stiffness matrix of the beam elements 
can be defined by exploiting the principle of virtual works. 
First of all, we observe that, in the presence of incremental quantities and linear-elastic material 
response, the stiffness matrix of the finite element allows one to establish a linear relationship 
between an incremental displacement vector Δu and an incremental load vector Δq. In this context, 
Δu and Δq will be defined with reference to the local axes ψ-χ. Let us now denote the components 
of Δu by the symbols Δu1, Δv1, Δ1, Δu2, Δv2, Δ2. Similarly, the symbols Δq1, Δf1, Δm1, Δq2, Δf2, 
Δm2 can be used to define the corresponding scalar components of Δq. 
After replacing the function χ(ψ) with a convenient function χ(), in which  denotes the traditional 
non-dimensional coordinate , whose value ranges between -1 and 1, we can define the axial force 
ΔN1() and the moment ΔM1() that would be given by the generalized nodal loads Δq1, Δf1 and 
Δm1 if the second end of the element were clamped. Therefore, ΔN1() and ΔM1() are determined 
with reference to the configuration defined by the function χ(), which represents the initial, non-
deformed configuration at the beginning of the first iteration. 
If 2l is the length of the geometrical axis in the displaced (usually curved) configuration, we easily 
derive the elongation dn1=ΔN1() l d/(EA) and the rotation d1=ΔM1() l d/(EI) concerned with 
a beam element whose length is ld. 
Then, we can focus on three different load conditions (say, C1, C2, C3) by considering the 
generalized forces q1=1, f1=1 and m1=1 at the first node. In consequence, we will find the axial 
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forces NC1() and NC2() that are given by the forces q1=1 and f1=1, as well as the moments MC1(), 
MC2() and MC3()=1 that are induced by the generalized forces q1=1, f1=1 and m1=1. 
Now, it is possible to apply the principle of virtual works by separately considering the effects of 
the load conditions C1, C2, C3 and by imposing three different sets of generalized displacements 
at the first node of the beam element: Δûα=[1 0 0]T, Δû=[0 1 0]T, Δû=[0 0 1]T. In other words, the 
vector Δûs (s=α, , ) collects given values of the generalized displacements Δu1, Δv1, Δ1. 
In the end, we obtain the internal virtual works: 

  LC1 = LC1(Δq1,Δf1,Δm1,q1=1) =  NC1() dn1 +  MC1() d1        (1a) 

  LC2 = LC2(Δq1,Δf1,Δm1,f1=1) =  NC2() dn1 +  MC2() d1        (1b) 

           LC3 = LC3(Δq1,Δf1,Δm1,m1=1) =  MC3() d1         (1c) 

where the integrals are to be evaluated for  ranging between -1 and 1. Note that the non-
dimensional coordinate  was introduced in order to compute the integrals by means of the Gauss 
method, which requires the value of the integrand function at a given number of points (the so-
called Gauss points) and is based on the equation 

       f() d = i f(i) wi d           (2) 

Here, f(i) denotes the integrand function at the i-th Gauss point, while wi is a convenient weight 
associated to the same point. Incidentally, we made use of eleven Gauss points for the numerical 
examples reported in the next Section. 
Finally, it is possible to solve three sets of three linear equations (in which Δq1, Δf1 and Δm1 
represent the unknowns) by imposing 
• LC1=1, LC2=0, LC3=0 when Δû=Δûα 
• LC1=0, LC2=1, LC3=0 when Δû=Δû 
• LC1=0, LC2=0, LC3=1 when Δû=Δû. 
In consequence, we derive the generalized forces Δq1, Δf1 and Δm1, which are generated at the first 
node when all the components of Δu are zero, with the exception of Δu1=1 or Δv1=1 or Δ1=1. As 
a matter of fact, when Δu1 is the only non-zero generalized displacement, q1=1 is the only 
generalized force that does a non-zero external virtual work (namely, a unit work, since Δu1 is also 
equal to 1). Similarly, f1=1 and m1=1 are the only generalized forces that do a non-zero (unit) 
external virtual work, when Δv1 or Δ1 is the only non-zero generalized displacement. 
This means that we have actually determined the entries kij of the stiffness matrix k (with i,j=1,2,3), 
since the generic entry kij denotes the i-th entry of Δq when all the entries of Δu are zero, with the 
exception of j-th entry, which must attain a unit value. 
Then, it is possible to immediately compute the entries kij (with i=4,5,6 and j=1,2,3), in view of the 
equations Δq2=-Δq1 and Δf2=-Δf1, while Δm2 must be in equilibrium with Δm1 and the moment 
corresponding to the couple Δf1, Δf2. 
Of course, an analogous procedure allows one to determine the entries kij, with i=1,…,6 and 
j=4,5,6. Indeed, we only need to clamp the first node, consider the axial force ΔN2() and the 

IJRDO-Journal of Mechanical And Civil Engineering                              ISSN: 2456-1479  

Volume-3 | Issue-12 | December,2017 5         



bending moment ΔM2() induced by the generalized nodal loads Δq2, Δf2 and Δm2, and apply the 
principle of virtual works by imposing that every generalized displacement is zero with the 
exception of Δu2=1 or Δv2=1 or Δ2=1. 
After computing the stiffness matrix of each element, it is possible to derive the usual linear system 
K ΔU = ΔQ, where ΔU and ΔQ collect all the generalized nodal displacements and generalized 
nodal forces (both referred to the global coordinates x-y). 
Therefore, by setting ΔQ=-ΔQ*, we tend to force a solution, which is in equilibrium with the given 
load vector Q. In fact, after solving the linear system K ΔU = ΔQ, we find the incremental 
displacements ΔU according to the small-displacement theory and determine an enhanced 
displaced configuration, which is defined through the updated displacement vector U=Uo+ΔU. 
Then, we can define a new vector ΔQ* and a new stiffness matrix K by introducing a function 
χ(ψ) or χ() for each element, whose stiffness matrix k must be updated as explained above. 
Thus, it is possible to proceed with the second iteration and the iterative scheme continues until a 
convenient norm of ΔQ* and/or ΔU is below a given tolerance. For the numerical tests discussed 
in the next Section, we imposed ΔÛ/Û<, where [•] denotes the Euclidean norm of the 
quantity [•], ΔÛ represents the last vector of incremental displacements, Û is the vector of total 
(cumulative) displacements at the end of the previous iteration and  refers to the selected 
threshold. 
 
3. Numerical tests 
In order to check the numerical approach discussed above, we carried out some preliminary tests, 
which were concerned with structural systems characterized by a simple geometry. A parameter 
=10-18 was chosen to end the iterative procedure. 
We started by considering a highly flexible cantilever beam subjected to a vertical load Q at the 
free end (Fig.2). By using a discrete model consisting of ten elements, the vertical and horizontal 
displacements (at the end of the iterative process) turned out to be nearly 30% and 5% of the beam 
length. As for the load, we assumed Q=0.5 units and the absolute values of the generalized nodal 
forces that should have been zero turned out to be in the range 2.710-15÷1.510-11 units. Similarly, 
the vertical force and the moment at the clamped end, which were determined by taking into 
account the displaced configuration, satisfied the equilibrium conditions in an excellent way. 
Indeed, the difference between the moment due to the external load and the moment computed at 
the constrained node was less than 3.510-14 units. 
 

 
Figure 2:  Cantilever beam 

 
A second example was also concerned with a single structural member. In this case, we focused 
on the classical problem of the post-buckling behavior of a simply supported beam subjected to a 
compressive load Q (cf. Fig. 3). For given values of L (beam length), I (moment of inertia) and E 
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(Young’s modulus), it is possible to express Q as a function of the angle α and/or the mid-point 
deflection . For instance, as shown, e.g., in Ref. [16], we can derive the relationship 
 

Q = 4 K2 E I / L2     (3) 

 
where K is a complete elliptic integral of the first kind. Therefore, the load Q depends on the 
rotation α. In fact, by introducing the parameter =sin(α/2), K can be written on the basis of the 
classical notations due to Legendre (first integral in the following equation) and Jacobi (second 
integral): 

K =     (1 – 2 sin2 )-1/2 d =    (1 – y2)-1/2 (1 – 2 y2)-1/2 dy         (4) 

 

 
Figure 3:  Simply supported beam subjected to a compressive load 

 

 

Figure 4:  Analytical and numerical post-buckling response 
 
Clearly, in both cases we have a function K=K(α) and, hence, Q=Q(α). 
Alternatively, it is possible to obtain the equation Q=42EI/2, which eventually allows one to 
establish a relationship between the load Q and the mid-point deflection . 
In order to test the numerical procedure discussed here, we considered the elastic beam of Fig. 3 
with L=1 m, E=200,000 MPa and a rectangular cross section, whose sides were 10 and 12 mm, 
respectively. In consequence, we obtained I=1,440 mm4, which implied a critical load 
Qcr=2EI/L2=2,842.45 N. 
Fig. 4 compares the analytical post-buckling response of the beam with the numerical solution 
given by a ten-element mesh. The solid curve shows the trend of the non-dimensional parameter 
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Q/Qcr as a function of /L according to the above equations, while the crosses correspond to the 
numerical results, which were obtained by imposing an increasing displacement to the free end. 
In order to enforce buckling, an initial vertical load was imposed (and next removed, at the 
beginning of the iterative procedure). 
Thanks to the scale of the ordinates, it can be easily noticed that the errors are always less than 1% 
and tend to decrease when the load Q is increased. More specifically, when /L0.135, the ratio 
Q/Qcr exceeds 1.024 in the case of the analytical solution and remains below 1.028 according to 
the finite element model. In consequence, the error is less than 0.4%. Instead, for low values of the 
ratio /L, it can be immediately checked that the error is in the range 0.8÷0.9%. 
It should also be noted that the absolute values of the generalized nodal forces that should have 
been zero were in the range 210-6÷310-4 N at the end of the final time step. 
The last example is concerned with another system characterized by unstable behavior. In this 
case, we considered a cantilever beam connected to another beam through a slider. The second end 
of this beam was also constrained by a slider (Fig. 5) and was free to move to the right or to the 
left. 

 
Figure 5:  Structural system subjected to unstable behaviour in the presence of tensile stresses 

 
If this structural system is subjected to tensile stresses when a horizontal displacement is imposed 
to the right end, it can be shown that a critical load exists, beyond which the solution characterized 
by a straight displaced configuration becomes unstable [17]. Thus, the right end of the first beam 
tends to move upwards (or downwards), while the left end of the second beam tends to move in 
the opposite direction. As for the load, it tends to decrease when the imposed displacement is 
increased, as shown by the solid line in Fig. 6. 
 

 

Figure 6:  Analytical and numerical response of the structural system in Fig. 5 
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The same cross sectional area and the same length, say L, were assumed for both beams, and each 
structural member was discretized by using eight elements. Fig. 6 compares some numerical results 
(denoted by crosses) with the analytical response, which can be determined as explained in Ref. 
17. As usual, the product EI denotes the bending stiffness of the beams, while α represents the 
rotation of the slider that connects the two structural members. As suggested by the schematic 
view on the right-hand side of Fig. 5, the solution was found by imposing that the slider in the 
middle was in equilibrium (i.e., by imposing that the couple induced by the normal forces N was 
in equilibrium with the moments M in the displaced configuration). In addition, two initial vertical 
loads (one upward, one downward) were imposed at the joint, with the aim of enforcing a displaced 
configuration. By following the same approach adopted in the case of buckling, these loads were 
removed at the beginning of the iterative procedure. 
The plots in Fig. 6 show that the errors tend to be less than 1% even for values of α that exceed 
36° (or π/5 radians). 
 
4. Closing remarks 
An algorithm has been discussed, which is suitable for the numerical analysis of elastic plane 
frames subjected to large displacements. The proposed method is based on an iterative procedure, 
which has the advantage of requiring the traditional tools applied to the analysis of the structural 
systems that can be studied in accordance to the small-displacement theory. Therefore, a computer 
code can be easily implemented, even if there is a cost to be paid: the stiffness matrix of the frame 
must be evaluated/updated at each iteration. 
In this paper, the finite element method has been used and non-traditional beam elements have 
been considered in order to describe the current frame geometry during the iterative process. In 
this way, also the classical 2-node elements succeed in taking into account curved geometrical 
axes. Meanwhile, the relevant stiffness matrices have been defined with the aim of obtaining 
equivalent nodal loads, which (for any set of virtual displacements allowed by the shape functions) 
do an external virtual work that equals the internal virtual work. 
In order to test the potential efficiency of the algorithm, some preliminary tests have been carried 
out. Owing to the simple geometry of the structural systems that have been considered so far, it is 
probably too early to come to a definite assessment about the real performance of the finite element 
application presented here, but some significant comparisons with analytical solutions show that 
accurate results can be obtained in spite of the extreme simplicity of the numerical approach. 
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