

- -

Journal Of Mechanical And Civil Engineering

ALESHIN TYPE AUTOMATA WITH REGULAR LANGUAGES

1A.Jeyanthi*, 2 B.Stalin

1Faculty, Department of Mathematics, Anna University, Regional Office Madurai, Tamilnadu, India.

2Assistant Professor, Department of Mechanical Engineering, Anna University, Regional Office Madurai, Tamilnadu, India.

1 jeyanthi2009@rediffmail.com, 2stalin1312@gmail.com

Abstract:

In this paper, the investigation of reversibility in computational devices is complemented

by the study of reversible Aleshin type automata. These are deterministic Aleshin type automata

that are also backward deterministic. All regular languages as well as some non-regular

languages are accepted by reversible deterministic Aleshin type automata. Thus, the

computational capacity of reversible Aleshin type automata lies properly in between the regular

and deterministic context-free languages. The closure properties and decidability questions of the

language class are investigated. It turns out that the closure properties of reversible Aleshin type

automata are similar to those of deterministic Aleshin type automata.

Keywords: Deterministic Aleshin type automata, reversible Aleshin type automata.

1. Introduction

Moreover, every deterministic context-free language which needs more than realtime is

shown not to be acceptable by reversible Aleshin type automata. In the second part of the paper,

closure properties and decidability questions of the language class are investigated. It turns out

that the closure properties of reversible Aleshin type automata are similar to those of

deterministic Aleshin type automata. The main difference is the somehow interesting result that

the language class accepted by reversible Aleshin type automata is not closed under union and

intersection with regular languages. Finally, the questions of whether a given automaton is a

reversible Aleshin type automaton, and whether its language is reversible are investigated. We

show that the problem to decide whether a given nondeterministic or deterministic Aleshin type

automaton is reversible is P-complete, whereas it is undecidable whether the language accepted

by a given nondeterministic Aleshin type automaton is reversible.

2. Closure properties

In this section, we study the closure properties of REV-AAs. It turned out that REV-AAs

and DAAs have similar closure properties, but the former are interestingly not closed under

union and intersection with regular languages.

Theorem 1. L (REV-AA) is closed under complementation.

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 1

mailto:stalin1312@gmail.com

Journal Of Mechanical And Civil Engineering

Proof. The closure under complementation for deterministic finite automata can be easily shown

by interchanging accepting and rejecting states. This idea cannot be translated directly to DAAs,

since mainly two problems may occur. First, the given DAA may not read its input completely

by entering a configuration in which no next move is defined or an infinite λ-loop is entered.

Second, the given DAA may perform λ-steps leading from an accepting state to a rejecting state

and back. By Theorem 5 we may assume that a given REV-AA M works in realtime and thus has

no λ-transitions. To overcome with the above-mentioned problems we then only have to ensure

that in every configuration a next move is defined. This can be realized with the usual

construction of adding a rejecting sink state which cannot be left once entered. Moreover,

transitions being undefined so far are added and lead to the sink state. To maintain the

reversibility of M we push the predecessor state of the sink state with a special marking onto the

stack store. Being in the sink state we push all symbols read onto the stack store. In this way, we

can identify the moment in which the sink state has been entered and, thus, can leave the sink

state in the backward computation. With this modification we can construct from M a REV-AA

M by interchanging accepting and rejecting states. Then, M accepts the complement of L (M)

and we obtain the closure under complementation.

Next, we consider the operations intersection and union with regular languages and first

give another example which enables us to show the non-closure under both operations.

Example 1. The language {w ∈ {a,b}∗ | |w |a = |w |b } is accepted by the REV-AA M = {q0,q1 },

{a,b}, {A , A , B , B , ⊥}, δ,q0 , ⊥, {q0} where the transition functions δ and δR are as

follows.

Transition function δ

(1) δ (q0 , a, ⊥) = (q1 , A ⊥)

(2) δ (q0 , b, ⊥) = (q1 , B ⊥)

(3) δ (q1 , a, A) = (q1 , A A)

(4) δ (q1 , a, A) = (q1 , A A)

(5) δ (q1 , b, A) = (q1 , λ)

(6) δ (q1 , b, A) = (q0 , λ)

(7) δ (q1 , b, B) = (q1 , B B)

(8) δ (q1 , b, B) = (q1 , B B)

(9) δ (q1 , a, B) = (q1 , λ)

(10) δ (q1 , a, B) = (q0 , λ)

The idea of the construction is as follows. We use the stack for counting the difference

between the number of a’s and b’s in the input. A’s on the stack indicate that there are more a’s

than b’s in the input read so far and B ’s on the stack denote the opposite. Additionally, the stack

symbols A and B are used to denote that the difference is one. Now, transitions (1) and (2) are

used to count the difference one. Transitions (3), (4) and (7), (8) increase the difference by one

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 2

- -

Journal Of Mechanical And Civil Engineering

and transitions (5) and (9) decrease the difference by one. Finally, if the difference is one then

transitions (6) and (10) can be used to decrease the difference to zero and to enter an accepting

state.

Reverse transition function δR

(1) δR (q0 , a, ⊥) = (q1 , B⊥)

(2) δR (q0 , b, ⊥) = (q1 , A⊥)

(3) δR (q1 , b, A) = (q1 , AA)

(4) δR (q1 , b, A) = (q1 , AA)

(5) δR (q1 , a, A) = (q1 , λ)

(6) δR (q1 , a, A) = (q0 , λ)

(7) δR (q1 , a, B) = (q1 , BB)

(8) δR (q1 , a, B) = (q1 , BB)

(9) δR (q1 , b, B) = (q1 , λ)

(10) δR (q1 , b, B) = (q0 , λ)

For the backward computation we just have to do the opposite by switching the roles of a

and b. For example, transition (4) of δ increases the difference by one when an a is read and

some A is on the stack, that is, there have been more a’s than b’s read so far. This difference is

later decreased by one with transition (5) when a b is read. Thus, for δR we have to increase the

difference when reading a b (transition (4)) and to decrease the difference when reading an a

(transition (5)). The remaining pairs (1) and (2), (3) and (6), (7) and (10), and (8) and (9) can be

translated similarly.

Theorem 2. L (REV-AA) is not closed under union and intersection with regular languages.

Proof. Due to Example 1 we know that L = {w ∈ {a,b}∗ | |w |a = |w |b } can be accepted by some

REV-AA. We assume that L (REV-AA) is closed under intersection with regular languages.

Then, L ∩a∗b∗ belongs to L (REV-AA) as well. Since L ∩ a∗b∗ = {anbn | n  0}, we obtain a

contradiction to Lemma 6. If the language class L(REV-AA) is closed under union with regular

languages, then L(REV-AA) is also closed under intersection with regular languages due to the

closure under complementation of regular languages and L (REV-AA) by Theorem 1. This is

again a contradiction.

Corollary 1. L(REV-AA) is not closed under union and intersection.

On the other hand, we obtain the closure under intersection and union with regular

languages under the condition that the regular language can be accepted by a reversible

deterministic finite automaton. In [14] reversibility in finite automata is defined as the property of

having only deterministic forward and backward computations. Additionally, the automata may

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 3

4

- -

Journal Of Mechanical And Civil Engineering

VOL 2 ISSUE 12 December 2015 Paper 1

possess several initial and accepting states. Here, we define a regular language as reversible if it

is accepted by some reversible deterministic finite automaton which possesses one initial state

only and obtain a proper subclass of the class defined in [14].

Theorem 3. L(REV-AA) is closed under union and intersection with reversible regular

languages.

Proof. Let M be a REV-AA which may be assumed to work in realtime by for every REV-AA

an equivalent realtime REV-AA can effectively be constructed. Let A be a reversible

deterministic finite automaton with one initial state. Then, a REV-AA M accepting L (M) ∩ L

(A) can be obtained using the classical construction. We define the state set of M as the

Cartesian product of the state sets of M and A. In the forward computation we update the current

state according to Ms and As transition function. The input is accepted if both states enter an

accepting state of M and A. In the backward computation we update the current state according

to Ms and As reverse transition function, since both automata are reversible and eventually

enter the initial states of M and A. The construction for L (M) ∪ L (A) is identical apart from the

fact that now a state of Mis accepting if at least one component is accepting.

Corollary 2. In this context the question may arise whether the union or intersection of a

non-regular language from L(REV-AA) with a non-reversible regular language is always a

non-reversible language. The following example shows that there are cases which lead to

REV-AAs although the regular language is not reversible. We consider the union of the

languages {an cbn | n ≥0} and a* b*, where the latter is shown not to be reversible in [14]. A

REV-AA which accepts the union works as follows. Basically, we take the construction for the

language {an cbn | n ≥0} where there is an a-loop on the initial state q0 pushing symbols A onto

the stack store. When reading a c we change to a state in which the b’s in the input are matched

with the A s on the stack store. If we read a b being in state q0 , we enter a new accepting state q

and write a new symbol $ onto the stack store. From state q we can only read b’s and push

another new symbol # onto the stack store for every b. In this way we can accept the union of

both languages. To give evidence for reversibility we just have to observe that the step in the

backward computation in which we have to reenter q0 from q can be restored by the information

stored onto the stack store.

Theorem 4. L(REV-AA) is not closed under concatenation, Kleene star, λ-free homomorphism,

and reversal.

Proof. The non-closure under the operations can be shown similar to the proofs for deterministic

context-free languages given in [3]. One just has to modify the languages used to be reversible.

We first consider the languages L1 = {an cbn dem | n,m ≥0} and L2 = {an cbm dem | n,m ≥0} which

are both in L (REV-AA). It can be observed that L1 ∪ L 2 / L (REV-AA) since its complement is

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 4

- -

Journal Of Mechanical And Civil Engineering

not context free.

To show the non-closure under concatenation we consider the languages L3 = $L1 ∪ L2

and $* which both belong to L(REV-AA). However, their concatenation $*L3 does not belong to

L (REV-AA). Otherwise, L4 = $*L3 ∩ $a*cb*de* = $L1 ∪ $L2 would belong to L (REV-AA) since

L (REV-AA) is closed under intersection with reversible regular languages. But L4 is not in L

(REV-AA) since its complement is not context free. The non-closure under Kleene star and λ-

free homomorphism can be shown as in [12]. One has to consider the languages L5 = {$} ∪ L3

and L6 = $L1 ∪ #L2 which are both in L (REV-AA). On the other hand, both L ∗ and h(L6), with

h being a homomorphism which maps # to $ and other symbols to themselves, can be shown to

be not deterministic context free. Thus, they do not belong to L (REV-AA) either.

 Finally, we consider the non-closure under reversal. Due to Example 1 we know that the

language {an cbn dem | n,m ≥0} ∪ {an cbm dem | n,m ≥0} belongs to L (REV-AA), but its reversal

is known not to be accepted by any realtime deterministic Aleshin type automaton. This shows

the non-closure under reversal.

Remark1. It is worth mentioning that there are two situations in which closure results of the

above-mentioned operations are obtained. The first result is that L(REV-AA) is closed under

marked concatenation and marked Kleene star. The idea for showing the closure under marked

concatenation is to first simulate the REV-AA for the first language. Then, when the marking

symbol is read, the current state is pushed onto the stack store. This stack symbol also acts as

bottom of-stack symbol for the second REV-AA which is subsequently simulated. The resulting

automaton is reversible, since the computation consists of two reversible sub-computations.

Additionally, the first sub-computation in the backward computation is started in the correct state

due to the information stored onto the stack store. The construction for marked Kleene star is

similar.

A second result one can observe is that the reversal LR of a language L ∈ L (REV-AA)

belongs to L(REV-AA) if L is accepted by a REV-AA which has one accepting state only and in

which every accepting computation ends in a configuration with empty (up to ⊥) stack store.

Theorem 5. L(REV-AA) is closed under inverse homomorphism.

Proof. Let M = (Q, ∆ , Γ , δ, q0 ,⊥ , F) be a REV-AA and h : Σ ∗ → ∆
* be a

homomorphism. By theorem for every REV-AA an equivalent realtime REV-AA can ffectively

be constructed. we assume that the given REV-AA M works in realtime. We have to construct a

REV-AA M which accepts the inverse homomorphic image h-1 (L(M)) = {w ∈ Σ*| h(w) ∈

L(M)}. The main idea of the following construction is to simulate the computation of M on input

h(a) by M on input a in one step. Since |h(a)| may be greater than one it may happen that more

than one symbol has to be popped from or pushed onto the stack store in one step. Nevertheless,

the maximal number of symbols to be pushed or popped in one step is bounded by the constant

m = max{|h(a)| | a ∈ Σ }. To overcome this problem of stacking and popping several symbols in

one step. We add a register to the states in which M can store up to m stack symbols of M (the

topmost ones), and we consider every string of m stack symbols of M to be a single stack

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 5

- -

Journal Of Mechanical And Civil Engineering

symbol of Ml . Formally, letM
l
=(Q

’
,Σ

’,
 Γ

 ‘
,δ ,q0 ,⊥ , F) where

Q = Q × Γ ≤m, Γ = (Γ \ {⊥}m ∪ {⊥}, q0 = (q0 , λ), F = F × Γ ≤ m

Language class ∪ • ∗ R h h−1 ∩REG ∪REG ∩ ∼

REG + + + + + + + + + +

L (REV-AA) − − − − − + − − − +

DCFL − − − − − + + + − +

CFL + + + + + + + + − −

Table.1. closure properties of language families discussed.

Now, for every a ∈ Σ , M has to simulate M on input h(a). If h(a) = λ, then we define transitions

δꞌ (q,a, Z) = (q, Z), for all q ∈ Q and Z ∈ Γꞌ . All these transitions are reversible. If h(a) ≠ λ,

then we consider for all q ∈ Q , y1 y2 · · · y l ∈ Γ≤ m , and Y = yl+1+yl+2 · · · yl+m ∈ Γꞌ the

configurations c = (λ,q, h(a), y1y2 · · · ylY) and check whether there exists a reversible

computation π of M starting on c and ending in configuration (h(a),q , λ, γ) with γ ∈ Γ* after

|h(a)| steps. If such π does not exist, we know that such a computation never occurs as sub-

computation in any computation of M, and we leave δ((q, y1y2 · · · yl), a, Y) undefined in this

case. If such a computation exists, then we have to differentiate between three cases.

First, in π more pop operations than push operations, say k1 pop operations and k2 push

operations, are performed with k1 > k2 . Then, let k = k1 −k2 and γ = yꞌk+1 yꞌk+2 · · · yꞌk1 yꞌk1 +1 yꞌk1

+2 · · · yꞌl+m . Here, primed symbols denote symbols which may have been changed due to push

and pop operations. Let us first consider the case k1≤ l . Then, k = k1 − k2 ≤ l − k2 ≤ l and we

define

δꞌ ((q,y1 y2 · · · yl), a, Y) = ((qꞌ , yꞌk+1 yꞌk+2 · · · yꞌk1 yꞌk1 +1 yꞌk1 +2 · · · yl),Y) .

 If k1 > l, then we define

δꞌ ((q, y1 y2 · · · yl), a, Y) = ((qꞌ,yꞌk+1,yꞌk+2 · · · yꞌl), Yꞌ),

with Yꞌ = yꞌl+1 yꞌl+2 · · · yꞌk1 yꞌk1 +1 yꞌk1 +2 · · · yl+m , if k l, and

δꞌ ((q, y1 y2 · · · yl), a, Y) = ((qꞌ , yꞌl+i+1 yꞌl+i+2 · · · yꞌk1 yk1 +1 yk1 +2 · · · yl+m),λ), if k = l + i for i > 0.

In the second case, more push than pop operations, say k1 push operations and k2 pop operations

are performed in π with k1 > k2 . Then, let k = k1 − k2 , γ = z1 z2 · · · zk yꞌ1 yꞌ2 · · · yꞌk2 yk2 +1 yk2 +2

· · · yl+m . First, let k2≤ l . Then, we define

δꞌ ((q, y1 y2 · · · yl), a, Y) = ((qꞌ , z1 z2 · · · zk yꞌ1 yꞌ2 · · · yꞌk2 yk2 +1 yk2 +2 · · · yl), Y),

if k + l≤ m, and

δꞌ((q, y1 y2 · · · yl), a, Y) = ((qꞌ , z1 z2 · · · zi), (zi+1 zi+2 · · · zk yꞌ 1 yꞌ 2 · · · yꞌk2 yk2 +1 yk2 +2 · · · yl)Y),

if k + l = m + i for i > 0. Now, let k2 > l. Then, k + l = k1 − k2 + l < k1 m and we define

δꞌ((q, y1 y2 · · · yl), a, Y) = ((qꞌ , z1 z2 · · · zk yꞌ 1 yꞌ 2 · · · yꞌl), Y),

with Yꞌ = yꞌl+1 yꞌl+2 · · · yꞌk2 yk2 +1 yk2 +2 · · · yl+m .

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 6

- -

Journal Of Mechanical And Civil Engineering

In the last case, as many push as pop operations are performed in π . This case can be handled

similarly.

 The defined transitions are reversible, since the knowledge of the state qꞌ , the input

symbol a ∈ Σ , which defines h(a), and the m topmost stack symbols of M are suffcient to

restore state q and the stack store of Mdue to the fact that π is reversible. Altogether, Mꞌ accepts

h−1(L(M)) and is a REV-AA. The closure properties of the language families discussed are

summarized in Table 1.

3. Decidability questions

Problems which are decidable for DAAs are decidable for REV-AAs as well. Therefore,

emptiness, universality, equivalence, and regularity are decidable for REV-AAs. On the other

hand, inclusion is known to be undecidable for DAAs. We now show that inclusion is

undecidable for REV-AAs, too. To this end, we use a reduction from Post’s correspondence

problem (PCP) which is known to be undecidable, [24]. Let Σ be an alphabet and an instance of

the PCP be given by two lists α = u1 , u2 , . . . , uk and β = v 1 , v 2 , . . . , vk of words from Σ + .

Furthermore, let A = {a1 ,a2 , . . . ,ak } be an alphabet with k symbols, Σ ∩ A = , and d =

max{|ui|,|vi||1≤i≤k be the maximal length of words occurring in α or β . Now, consider two

languages Lα and Lβ .

Lα = {ui1 ui2 · · · uim $aim
d+2d+2am-1

d+2 · · · ai1
d+2 | m≥1 ,1≤ij ≤ k, 1≤j≤m},

Lβ = {vi1 vi2…..vim $ aim
d+2 aim-1

d+2……ai1
d+2 | m≥1 ,1≤ij ≤ k, 1≤j≤m}

Theorem6. The languages Lα and Lβ as well as their reversals RL and
RL are accepted by REV-

AAs.

Proof. We describe the construction of a REV-AA Mα accepting Lα . The construction for Lβ is

identical. The idea of the construction is to stack the input onto the stack store until the symbol $

is read. Then, each block of d + 2 identical symbols ai is read while ui is popped from the stack

store. In the remaining time up to the end of the block, which is counted in the states, the stack

store remains unchanged. Then, the next block of the input and the next word on the stack store

is processed. If an error occurs, the transitions remain undefined. Finally, an accepting state is

entered when the stack store is empty up to ⊥ .

For the detailed construction let Mα = Q , Σ ∪ A ∪ {$}, Σ ∪ {⊥}, δ,q0 , ⊥ , {qa }) and

Q = {q0 , p, qa } ∪ {pi,j ,qi,j | 1 ≤ i ≤ k,

1≤ j ≤ d}. For a ∈ Σ , aꞌ ∈ Σ ∪ {⊥}, 1≤ i≤ k, and ui = ui,1 ui,2 · · · ui,|u i | , we define

δ (q0 , a, a ) = (q0 ,aa),

δ (q0 , $,a) = (p,a),

δ (p, ai , a) = (pi,1 , a),

δ (pi, j , ai , a) = (pi, j+1 , λ) for 1 ≤j≤ |ui | − 1 if a = ui,|u i |− j +1 ,

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 7

8

- -

Journal Of Mechanical And Civil Engineering

VOL 2 ISSUE 12 December 2015 Paper 1

δ (pi,|u i | , ai , aꞌ) = (qi ,|ui | , λ) if a = ui,1 ,

δ (qi, j , ai , aꞌ) = (qi, j+1 , aꞌ) for |ui |≤ j≤ d − 1,

δ (q i ,d , ai , aꞌ) = (p , aꞌ),

δ (p, λ, ⊥) = (qa , ⊥).

Automaton Mα is reversible, since in the backward computation the input makes sure in

which way the stack store has to be restored. Additionally, the input carries the information of

how many symbols have to be read before restoring the stack store. Obviously, Mα has exactly

one accepting state and every accepting computation ends in a configuration with empty (up to

⊥) stack store. By the discussion in Remark 1 we obtain that RL and
RL can be accepted by

REV-AAs as well.

Theorem 7. Let M1 and M2 be two REV-AAs. Then it is undecidable whether L(M1) ⊆ L(M2).

Proof. We first show that it is undecidable to test whether L (M1) ∩ L (M2) is the empty set.

Given an instance of the PCP we can construct due to Theorem 6 two REV-AAs whose

intersection is empty if and only if the PCP has no solution. If we could decide the emptiness of

the intersection, we could decide whether or not a PCP has a solution. Obviously, L(M1) ⊆

L(M2) if and only if L (M1) ∩ L (M2) = ø. By Theorem 1 we know that L(REV-AA) is closed

under complementation. If we could decide the inclusion L(M1) ⊆ L (M2), then we could decide

the emptiness of intersection as well. This is a contradiction.

Theorem 8. Let M be a nondeterministic Aleshin type automaton. Then it is undecidable

whether L (M) ∈ L (REV-AA).

Proof. We consider an instance of the PCP and define the languages L1 = Lα #LR
β and L 2 = {w

#wR | w ∈ (Σ ∪ A ∪ {$})* } ∩ Σ *$A*#A*$Σ * .

Language L1 belongs to L (REV-AA) due to Theorem 6 and the closure under marked

concatenation discussed in Remark 1. So, L1 is a deterministic context-free language. Clearly, L2

is a deterministic context-free language as well. Due to the closure of the deterministic context-

free languages under complementation [1], we obtain that 21 LL  is context free. We will now

show that 21 LL  belongs to L (REV-AA) if and only if the given instance of the PCP has no

solution. If the instance has no solution, then L1 ∩ L2 =  and, thus, its complement 21 LL  is

the regular language (Σ ∪ A ∪ {#, $})* , which belongs to L (REV-AA) due to the regular

languages are strictly included in L(REV-AA). On the other hand, if 21 LL  belongs to L

(REV-AA), then its complement L1 ∩ L2 belongs to L (REV-AA) as well. We have to show that

the given instance of the PCP has no solution. By way of contradiction we assume that the

instance has a solution. Then, L1 ∩ L2 is an infinite, context-free language. Let w = u1 u2 · · · um

$am
d+2am-1

d+2 · · · a1
d+2 #a1

d+2a2
d+2 · · · am

d+2 $vmvm−1 ··· v 1 be a word in L1 ∩ L2 long enough

such that the pumping lemma for context-free languages applies. Pumping leads to words which

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 8

9

- -

VOL 2 ISSUE 12 December 2015 Paper 1

are not in L1 ∩ L 2 and we obtain a contradiction.

Now, if we could decide whether the context-free language 21 LL  belongs to L(REV-AA),

then we could decide whether the given instance of the PCP has a solution which is a

contradiction.

The same problem of Theorem 8 for deterministic Aleshin type automata is open.

However, we have the following decidable property which contrasts the result that there is no

algorithm which decides whether, for example, a given cellular automaton or iterative array is

reversible [6,7]. Following the discussion in [2], we will consider in the remainder of this section

the size of a pushdown automaton as the length of its representation.

Theorem 9. Let M be a deterministic Aleshin type automaton of size n. Then it is decidable in

time O (n4) whether M is a REV-AA.

Proof. In order to decide whether a given deterministic Aleshin type automaton M = (Q, Σ , Γ ,

δ,q0 , ⊥ , F) is reversible, in general, it is not sufficient to inspect the transition function. Whether

a transition can be reversed depends on the information that is available after performing it. If

this information is unique for all in-transitions to a state, then the transition can be reversed. For

example, δ (q, a, Z) = (qꞌ , Zꞌ Z) or δ (q, a, Z) = (qꞌ , Zꞌ) provides the state qꞌ , the input symbol

a, and the topmost stack symbol Zꞌ . On the other hand, consider δ (q, a, Z) = (qꞌ , λ) which

provides only the state q and the input symbol a. The necessary information is complemented by

the second symbol on the stack store, which cannot be determined by inspecting the transition

function only

In order to cope with the problem, we first construct an equivalent DAA Mꞌ = (Q , Σ , Γꞌ , δꞌ ,q0 ,

⊥ , F), where Γꞌ = Γ 2 ∪ {⊥} and (qꞌ , ⊥) if δ (q, a, ⊥) = (qꞌ , ⊥),

δꞌ(q, a, ⊥) = (qꞌ , (Z ⊥)⊥) if δ (q,a, ⊥) = (qꞌ , Z ⊥),

 (qꞌ , (Z Y 2)) if δ (q, a, Y 1) = (qꞌ , Z),

δꞌ (q,a, (Y 1 Y 2)) = (qꞌ , (Z Y 1)(Y 1 Y 2)) if δ (q, a, Y 1) = (qꞌ , Z Y1),

 (qꞌ , λ) if δ (q, a, Y 1) = (qꞌ , λ).

By construction there is a bijection ϕ between the configurations passed through by M and Mꞌ ,

where ϕ(v ,q, w , Z 1 Z 2 Z 3 · · · Zk ⊥) = (v ,q, w , (Z 1 Z 2)(Z 2 Z 3) · · · (Zk−1 Zk)(Zk ⊥)⊥).

Moreover, M and Mꞌ have the same initial configurations, and a configuration ca of M is

accepting if and only if ϕ (ca) is an accepting configuration of Mꞌ . Therefore, M and Maccept

the same language. Furthermore, Mꞌ is of size O (n). Basically, the idea of the construction is to

store information of the second stack symbol in the topmost stack symbol. The construction may

introduce also transitions for situations that cannot appear. For example, if in any computation

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 9

10

- -

Journal Of Mechanical And Civil Engineering

VOL 2 ISSUE 12 December 2015 Paper 1

there is never a Z on top of a Y in the stack store, then the transition δꞌ (q, a, (ZY)) is useless.

However, if a transition of the form δꞌ(q,a, (Y1 Y2)) = (qꞌ , λ) is applied, then we do now have

the necessary information to test for uniqueness after having performed the transition as

mentioned above. That is, we know the state qꞌ , the input symbol a, and the topmost stack

symbol Y2 . So, basically, it remains to be tested whether a transition is applied in some

computation or whether it is useless.

To this end, we label the transitions of δꞌ uniquely, say by the set of labels B = {l1,l2 , . . . ,lk }.

Then we apply an old trick and consider words over the alphabet B. On input u ∈ B* a DAA

M with all states final tries to imitate a computation of Mꞌ by applying in every step the

transition whose label is currently read. If Mꞌ accepts some input u1 u2 · · · un , then thereis a

computation (not necessarily accepting) of Mꞌ that uses the transitions u1 u2 · · · un in this order.

If conversely there is a computation of Mꞌ that uses the transitions u1 u2 · · · un in this order, then

u1 u2 · · · un is accepted by M .So, in order to determine whether a transition with label li of Mꞌ is

useful, it suffices to decide whether M accepts an input containingthe letter li. This decision can

be done by testing the emptiness of the deterministic context-free language L (M) ∩ B *li B *

.Concerning the time complexity of identifying all useless transitions, we first observe that the

size of M and of each DAA M li accepting L (M) ∩ B *li B * is in O (n). To test the emptiness

of some DAA M li , we have to convert M li to an equivalent context-free grammar and test its

emptiness. According to [2] the conversion to an equivalent context-free grammar has time

complexity O (n3).This implies that the time complexity of removing all useless transitions is in

O(n4)

Assume that Mꞌꞌ is constructed from Mꞌ by deleting all useless transitions. Clearly, Mꞌꞌ

and M are equivalent and the size of Mꞌꞌ is in O (n). Now, for any state we consider all in-

transitions and check whether the corresponding information after performing it (state, input

symbol and pushdown symbol) is unique. If this is true for all states, then M is reversible, and

irreversible otherwise. The latter test has time complexity O (n2). Thus, we obtain that the

reversibility of M can be decided in O (n4) time.

Corollary 3. Let M be a nondeterministic Aleshin type automaton of size n. Then it is decidable

in time O (n4) whether M is a REV-AA.

Proof. By inspecting the transition function one can decide whether or not M is a DAA. If the

answer is yes, then it can be decided whether M is a REV-AA by Theorem 9. If M is not a DAA,

then it cannot be a REV-AA. Since the inspection of the transition function can be done in O (n2)

time, we obtain the time complexity claimed.

Theorem 10. The decision problem whether a given deterministic Aleshin type automaton is a

REV-AA is P-complete.

Proof. By Theorem 9 the problem is in P. Its P-hardness is shown by reduction of the

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 10

- -

Journal Of Mechanical And Civil Engineering

P-complete problem GEN discussed in [4]. Given a finite set X , a binary operation • on X

(presented as a table), a subset S ⊆ X , and an element w ∈ X , GEN is the problem to decide

whether w is contained in the smallest subset of X which contains S and is closed under the

operation •.

 For a given instance of GEN we construct a pushdown automaton M = {q0 ,q, f }, {e}, X ∪

{⊥}, δ,q0 , ⊥ , { f } , where

(q, w) ∈ δ (q0 , λ, ⊥),

(f , ⊥) ∈ δ (q, λ, ⊥),

(q, λ) ∈ δ (q, λ, x), if x ∈ S , and

(q, yz) ∈ δ (q, λ, x), if x = y • z for some y, z ∈ X .

The construction of M can be done in logarithmic space with regard to the instance of

GEN. Moreover, L(M) =  if and only if w is not generated by S and, thus, does not belong to

the smallest subset of X which contains S and is closed under the operation •.

Next, M is transformed into a REV-AA Mꞌ such that L(M) =  if and only if L(Mꞌ) =. To this

end, we construct Mꞌ by labeling the transitions of M uniquely by some set of labels B , and

consider words over the alphabet B as inputs. The DAA Mꞌ tries to imitate a computation of M

by applying in every step the transition whose label is currently read. The resulting DAA Mꞌ is

reversible since each input symbol indicates which transition of M has to be chosen by the

reverse transition function of Mꞌ. The construction of Mꞌ can be done in logarithmic space.

Moreover, L(M) = ø if and only if L (Mꞌ) = .

 Finally, we construct another DAA Mꞌꞌ by concatenating the language L = {anbn | n ≥0}

to L (Mꞌ). To this end, appropriate transitions from the state f to an initial configuration of a

DAA accepting L have to be added. Again, the construction of Mꞌꞌ can be done in logarithmic

space.

we know that L cannot be accepted by any REV-AA. So, Mꞌꞌ is not a REV-AA if L(Mꞌ) ≠

. On the other hand, if L (Mꞌ) = , then Mꞌꞌ is reversible, since the simulation of Mꞌ is reversible

by construction, and the configuration with state f leading to a possibly non-reversible

computation never appears. Altogether, we obtain that L (Mꞌ) ≠ if and only if Mꞌꞌ is a REV-AA.

This concludes the reduction and shows the P-hardness of the given problem. W

Corollary. The decision problem whether a given nondeterministic Aleshin type automaton is a

REV-AA is P-complete.

4. Conclusion

All deterministic context-free languages can be parsed in linear time using the well-

known parsing algorithms for grammars. Thus, reversible deterministic context-free languages

can be parsed in linear time as well. But taking into account the constants arising in the time

complexity, it might be the case that reversible deterministic context-free languages can be

parsed in less time.

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 11

- -

Journal Of Mechanical And Civil Engineering

References

[1] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, 1978.

[2] J.E. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory, Languages, and

Computation, Pearson, Upper Saddle River, 2003.

[3] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, Reading, 1979.

[4] N.G. Jones, W.T. Laaser, Complete problems for deterministic polynomial time, Theoret.

Comput. Sci. 3 (1977) 105–117.

[5] S. Kobayashi, T. Yokomori, Learning approximately regular languages with reversible

languages, Theoret. Comput. Sci. 174 (1997) 251–257.

[6] M. Kutrib, A. Malcher, Fast reversible language recognition using cellular automata, Inform.

and Comput. 206 (2008) 1142–1151.

[7] M. Kutrib, A. Malcher, Real-time reversible iterative arrays, Theoret. Comput. Sci. 411

(2010) 812–822.

[8] R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5

(1961) 183–191.

[9] M. Latteux, A. Lemay, Y. Roos, A. Terlutte, Identification of biRFSA languages, Theoret.

Comput. Sci. 356 (2006) 212–223.

[10] S. Lombardy, On the construction of reversible automata for reversible languages, in:

ICALP 2002: Automata, Languages and Programming, in: Lecture Notes in Comput. Sci., vol.

2380, Springer, Berlin, 2002, pp. 170–182.

[11] K. Morita, A. Shirasaki, Y. Gono, A 1-tape 2-symbol reversible Turing machine, Trans.

IEICE E 72 (1989) 223–228.

[12] K. Morita, Reversible computing and cellular automata—a survey, Theoret. Comput. Sci.

395 (2008) 101–131.

[13] I. Phillips, I. Ulidowski, Reversing algebraic process calculi, J. Log. Algebr. Program. 73

(2007) 70–96.

[14] J.-E. Pin, On reversible automata, in: Latin 1992: Theoretical Informatics, in: Lecture Notes

in Comput. Sci., vol. 583, Springer, Berlin, 1992, pp. 401–416.

[15] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[16] T. Yokoyama, H.B. Axelsen, R. Glück, Reversible flowchart languages and the structured

reversible program theorem, in: ICALP 2008: Automata, Languages and Programming, in:

Lecture Notes in Comput. Sci., vol. 5126, Springer, Berlin, 2008, pp. 258–270.

[17] T. Yokoyama, Reversible computation and reversible programming languages, Electron.

Notes Theor. Comput. Sci. 253 (2010) 71–81.

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-12 | December,2015 | Paper-1 12

