
  

 

 

 

- -  

Journal Of Mechanical And Civil Engineering 

   

ALESHIN TYPE AUTOMATA WITH REGULAR LANGUAGES 
 

1A.Jeyanthi*, 2 B.Stalin 

1Faculty, Department of Mathematics, Anna University, Regional Office Madurai, Tamilnadu, India. 

2Assistant Professor, Department of Mechanical Engineering, Anna University, Regional Office Madurai, Tamilnadu, India. 

1 jeyanthi2009@rediffmail.com, 2stalin1312@gmail.com 

 

Abstract: 

In this paper, the investigation of reversibility in computational devices is complemented 

by the study of reversible Aleshin type automata. These are deterministic Aleshin type automata 

that are also backward deterministic. All regular languages as well as some non-regular 

languages are accepted by reversible deterministic Aleshin type automata. Thus, the 

computational capacity of reversible Aleshin type automata lies properly in between the regular 

and deterministic context-free languages. The closure properties and decidability questions of the 

language class are investigated. It turns out that the closure properties of reversible Aleshin type  

automata are similar to those of deterministic Aleshin type automata. 

 

Keywords: Deterministic Aleshin type automata, reversible Aleshin type automata.  

 

1. Introduction 

Moreover, every deterministic context-free language which needs more than realtime is 

shown not to be acceptable by reversible Aleshin type  automata. In the second part of the paper, 

closure properties and decidability questions of the language class are investigated. It turns out 

that the closure properties of reversible Aleshin type automata are similar to those of 

deterministic Aleshin type automata. The main difference is the somehow interesting result that 

the language class accepted by reversible Aleshin type automata is not closed under union and 

intersection with regular languages. Finally, the questions of whether a given automaton is a 

reversible Aleshin type automaton, and whether its language is reversible are investigated. We 

show that the problem to decide whether a given nondeterministic or deterministic Aleshin type 

automaton is reversible is P-complete, whereas it is undecidable whether the language accepted 

by a given nondeterministic Aleshin type automaton is reversible.  

 

2. Closure properties  

In this section, we study the closure properties of REV-AAs. It turned out that REV-AAs 

and DAAs have similar closure properties, but the former are interestingly not closed under 

union and intersection with regular languages.  

 

Theorem 1. L (REV-AA) is closed under complementation.  
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Proof. The closure under complementation for deterministic finite automata can be easily shown 

by interchanging accepting and rejecting states. This idea cannot be translated directly to DAAs, 

since mainly two problems may occur. First, the given DAA may not read its input completely 

by entering a configuration in which no next move is defined or an infinite λ-loop is entered. 

Second, the given DAA may perform λ-steps leading from an accepting state to a rejecting state 

and back. By Theorem 5 we may assume that a given REV-AA M works in realtime and thus has 

no λ-transitions. To overcome with the above-mentioned problems we then only have to ensure 

that in every configuration a next move is defined. This can be realized with the usual 

construction of adding a rejecting sink state which cannot be left once entered. Moreover, 

transitions being undefined so far are added and lead to the sink state. To maintain the 

reversibility of M we push the predecessor state of the sink state with a special marking onto the 

stack  store. Being in the sink state we push all symbols read onto the stack store. In this way, we 

can identify the moment in which the sink state has been entered and, thus, can leave the sink 

state in the backward computation. With this modification we can construct from M a REV-AA 

M by interchanging accepting and rejecting states. Then, M accepts the complement of L (M) 

and we obtain the closure under complementation.  

Next, we consider the operations intersection and union with regular languages and first 

give another example which enables us to show the non-closure under both operations.  

 

Example 1. The language {w ∈ {a,b}∗ | |w |a = |w |b } is accepted by the REV-AA M = {q0,q1 }, 

{a,b}, {A , A , B , B , ⊥}, δ,q0 , ⊥, {q0}  where the transition functions δ and δR are as 

follows. 

Transition function δ 

(1) δ (q0 , a, ⊥) = (q1 , A ⊥) 

(2) δ (q0 , b, ⊥) = (q1 , B ⊥) 

(3) δ (q1 , a, A ) = (q1 , A A ) 

(4) δ (q1 , a, A ) = (q1 , A A ) 

(5) δ (q1 , b, A ) = (q1 , λ) 

(6) δ (q1 , b, A ) = (q0 , λ) 

(7) δ (q1 , b, B ) = (q1 , B B ) 

(8) δ (q1 , b, B ) = (q1 , B B ) 

(9) δ (q1 , a, B ) = (q1 , λ) 

(10) δ (q1 , a, B ) = (q0 , λ) 

 

The idea of the construction is as follows. We use the stack for counting the difference 

between the number of a’s and b’s in the input. A’s on the stack indicate that there are more a’s 

than b’s in the input read so far and B ’s on the stack denote the opposite. Additionally, the stack 

symbols A and B are used to denote that the difference is one. Now, transitions (1) and (2) are 

used to count the difference one. Transitions (3), (4) and (7), (8) increase the difference by one 
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and transitions (5) and (9) decrease the difference by one. Finally, if the difference is one then 

transitions (6) and (10) can be used to decrease the difference to zero and to enter an accepting 

state.  

 

Reverse transition function δR  

(1) δR (q0 , a, ⊥) = (q1 , B⊥) 

(2) δR (q0 , b, ⊥) = (q1 , A⊥) 

(3) δR (q1 , b, A) = (q1 , AA ) 

(4) δR (q1 , b, A ) = (q1 , AA ) 

(5) δR (q1 , a, A ) = (q1 , λ) 

(6) δR (q1 , a, A ) = (q0 , λ) 

(7) δR (q1 , a, B ) = (q1 , BB ) 

(8) δR (q1 , a, B ) = (q1 , BB ) 

(9) δR (q1 , b, B ) = (q1 , λ) 

(10) δR (q1 , b, B ) = (q0 , λ) 

 

For the backward computation we just have to do the opposite by switching the roles of a 

and b. For example, transition (4) of δ increases the difference by one when an a is read and 

some A is on the stack, that is, there have been more a’s than b’s read so far. This difference is 

later decreased by one with transition (5) when a b is read. Thus, for δR we have to increase the 

difference when reading a b (transition (4)) and to decrease the difference when reading an a 

(transition (5)). The remaining pairs (1) and (2), (3) and (6), (7) and (10), and (8) and (9) can be 

translated similarly.  

 

Theorem 2. L (REV-AA) is not closed under union and intersection with regular languages.  

 

Proof. Due to Example 1 we know that L = {w ∈ {a,b}∗ | |w |a = |w |b } can be accepted by some 

REV-AA. We assume that L (REV-AA) is closed under intersection with regular languages. 

Then, L ∩a∗b∗ belongs to L (REV-AA) as well. Since L ∩ a∗b∗ = {anbn | n  0}, we obtain a 

contradiction to Lemma 6. If the language class L(REV-AA) is closed under union with regular 

languages, then L(REV-AA) is also closed under intersection with regular languages due to the 

closure under complementation of regular languages and L (REV-AA) by Theorem 1. This is 

again a contradiction.   

 

Corollary 1. L(REV-AA) is not closed under union and intersection.  

On the other hand, we obtain the closure under intersection and union with regular 

languages under the condition that the regular language can be accepted by a reversible 

deterministic finite automaton. In [14] reversibility in finite automata is defined as the property of 

having only deterministic forward and backward computations. Additionally, the automata may 
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possess several initial and accepting states. Here, we define a regular language as reversible if it 

is accepted by some reversible deterministic finite automaton which possesses one initial state 

only and obtain a proper subclass of the class defined in [14].  

 

Theorem 3. L(REV-AA) is closed under union and intersection with reversible regular 

languages.  

 

Proof. Let M be a REV-AA which may be assumed to work in realtime by for every REV-AA 

an equivalent realtime REV-AA can effectively be constructed. Let A be a reversible 

deterministic finite automaton with one initial state. Then, a REV-AA M accepting L (M) ∩ L 

(A) can be obtained using the classical construction. We define the state set of M  as the 

Cartesian product of the state sets of M and A. In the forward computation we update the current 

state according to Ms and As transition function. The input is accepted if both states enter an 

accepting state of M and A. In the backward computation we update the current state according 

to Ms and As  reverse transition function, since both automata are reversible and eventually 

enter the initial states of M and A. The construction for L (M) ∪ L (A) is identical apart from the 

fact that now a state of Mis accepting if at least one component is accepting.  

 

Corollary 2. In this context the question may arise whether the union or intersection of a       

non-regular language from L(REV-AA) with a non-reversible regular language is always a     

non-reversible language. The following example shows that there are cases which lead to     

REV-AAs although the regular language is not reversible. We consider the union of the 

languages {an cbn | n ≥0} and a* b*, where the latter is shown not to be reversible in [14]. A 

REV-AA which accepts the union works as follows. Basically, we take the construction for the 

language {an cbn | n ≥0} where there is an a-loop on the initial state q0 pushing symbols A onto 

the stack store. When reading a c we change to a state in which the b’s in the input are matched 

with the A s on the stack store. If we read a b being in state q0 , we enter a new accepting state q 

and write a new symbol $ onto the stack store. From state q we can only read b’s and push 

another new symbol # onto the stack store for every b. In this way we can accept the union of 

both languages. To give evidence for reversibility we just have to observe that the step in the 

backward computation in which we have to reenter q0 from q can be restored by the information 

stored onto the stack store.   

 

Theorem 4. L(REV-AA) is not closed under concatenation, Kleene star, λ-free homomorphism, 

and reversal.  

 

Proof. The non-closure under the operations can be shown similar to the proofs for deterministic 

context-free languages given in [3]. One just has to modify the languages used to be reversible. 

We first consider the languages L1 = {an cbn dem | n,m ≥0} and L2 = {an cbm dem | n,m ≥0} which 

are both in L (REV-AA). It can be observed that L1 ∪ L 2 / L (REV-AA) since its complement is 
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not context free.  

To show the non-closure under concatenation we consider the languages L3 = $L1 ∪ L2 

and $* which both belong to L(REV-AA). However, their concatenation $*L3 does not belong to 

L (REV-AA). Otherwise, L4 = $*L3 ∩ $a*cb*de* = $L1 ∪ $L2 would belong to L (REV-AA) since 

L (REV-AA) is closed under intersection with reversible regular languages. But L4 is not in L 

(REV-AA) since its complement is not context free. The non-closure under Kleene star and λ-

free homomorphism can be shown as in [12]. One has to consider the languages L5 = {$} ∪ L3 

and L6 = $L1 ∪ #L2 which are both in L (REV-AA). On the other hand, both L ∗ and h(L6 ), with 

h being a homomorphism which maps # to $ and other symbols to themselves, can be shown to 

be not deterministic context free. Thus, they do not belong to L (REV-AA) either.  

 

 Finally, we consider the non-closure under reversal. Due to Example 1 we know that the 

language  {an cbn dem | n,m ≥0} ∪ {an cbm dem | n,m ≥0} belongs to L (REV-AA), but its reversal 

is known not to be accepted by any realtime deterministic Aleshin  type automaton. This shows 

the non-closure under reversal.  

Remark1. It is worth mentioning that there are two situations in which closure results of the 

above-mentioned operations are obtained. The first result is that L(REV-AA) is closed under 

marked concatenation and marked Kleene star. The idea for showing the closure under marked 

concatenation is to first simulate the REV-AA for the first language. Then, when the marking 

symbol is read, the current state is pushed onto the stack store. This stack symbol also acts as 

bottom of-stack symbol for the second REV-AA which is subsequently simulated. The resulting 

automaton is reversible, since the computation consists of two reversible sub-computations. 

Additionally, the first sub-computation in the backward computation is started in the correct state 

due to the information stored onto the stack store. The construction for marked Kleene star is 

similar.  

A second result one can observe is that the reversal LR of a language L ∈ L (REV-AA) 

belongs to L(REV-AA) if L is accepted by a REV-AA which has one accepting state only and in 

which every accepting computation ends in a configuration with empty (up to ⊥) stack store.   

 

Theorem 5. L(REV-AA) is closed under inverse homomorphism.  

Proof.    Let M = (Q, ∆ , Γ , δ, q0 ,⊥ , F)   be   a   REV-AA   and    h : Σ ∗  → ∆
*    be a 

homomorphism. By theorem for every REV-AA an equivalent realtime REV-AA can ffectively 

be constructed. we assume that the given REV-AA M works in realtime. We have to construct a 

REV-AA  M which accepts the inverse homomorphic image h-1 (L(M)) = {w ∈  Σ*| h(w ) ∈  

L(M)}. The main idea of the following construction is to simulate the computation of M on input 

h(a) by M on input a in one step. Since |h(a)| may be greater than one it may happen that more 

than one symbol has to be popped from or pushed onto the stack  store in one step.  Nevertheless, 

the maximal number of symbols to be pushed or popped in one step is bounded by the constant 

m = max{|h(a)| | a ∈  Σ }. To overcome this problem of stacking and popping several symbols in 

one step. We add a register to the states in which M can store up to m stack symbols of M (the 

topmost ones), and we consider every string of m stack symbols of M to be a single stack  
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symbol of Ml . Formally, letM
l 
=(Q

’ 
,Σ

’,
 Γ

 ‘   
,δ ,q0 ,⊥ , F) where  

Q = Q × Γ ≤m, Γ = (Γ \ {⊥}m ∪  {⊥}, q0 = (q0 , λ), F = F × Γ ≤  m   

  

Language class ∪  • ∗  R h h−1 ∩REG ∪REG ∩ ∼ 

REG + + + + + + + + + + 

L (REV-AA) − − − − − + − − − + 

DCFL − − − − − + + + − + 

CFL + + + + + + + + − − 

Table.1. closure properties of language families discussed. 

 

Now, for every a ∈  Σ , M has to simulate M on input h(a). If h(a) = λ, then we define transitions 

δꞌ (q,a, Z ) = (q, Z ), for  all q ∈  Q and Z ∈  Γꞌ . All these transitions are reversible. If h(a) ≠ λ, 

then we consider for all q ∈  Q , y1 y2 · · · y l ∈  Γ≤ m , and Y = yl+1+yl+2 · · · yl+m ∈  Γꞌ the 

configurations c = (λ,q, h(a), y1y2 · · · ylY ) and check whether there exists a reversible 

computation π of M starting on c and ending in configuration (h(a),q , λ, γ ) with γ ∈  Γ* after 

|h(a)| steps. If such π does not exist, we know that such a computation never occurs as sub-

computation in any computation of M, and we leave δ((q, y1y2 · · · yl ), a, Y ) undefined in this 

case. If such a computation exists, then we have to differentiate between three cases.  

First, in π more pop operations than push operations, say k1 pop operations and k2 push 

operations, are performed with  k1 > k2 . Then, let k = k1 −k2 and γ = yꞌk+1 yꞌk+2 · · · yꞌk1 yꞌk1 +1 yꞌk1 

+2 · · · yꞌl+m . Here, primed symbols denote symbols which may have been changed due to push 

and pop operations. Let us first consider the case k1≤ l . Then, k = k1 − k2 ≤ l − k2 ≤ l and we 

define 

δꞌ ((q,y1 y2 · · · yl ), a, Y) = ((qꞌ , yꞌk+1 yꞌk+2 · · · yꞌk1 yꞌk1 +1 yꞌk1 +2 · · · yl ),Y ) . 

 If k1 > l, then we define  

δꞌ ((q, y1 y2 · · · yl ), a, Y) = ((qꞌ,yꞌk+1,yꞌk+2 · · · yꞌl ), Yꞌ),  

with Yꞌ = yꞌl+1 yꞌl+2 · · · yꞌk1 yꞌk1 +1 yꞌk1 +2 · · · yl+m , if k l, and  

δꞌ ((q, y1 y2 · · · yl ), a, Y) = ((qꞌ , yꞌl+i+1 yꞌl+i+2 · · · yꞌk1 yk1 +1 yk1 +2 · · · yl+m ),λ),  if k = l + i for i > 0.  

 

In the second case, more push than pop operations, say k1 push operations and k2 pop operations 

are performed in π with k1 > k2 . Then, let k = k1 − k2 , γ = z1 z2 · · · zk yꞌ1 yꞌ2 · · · yꞌk2 yk2 +1 yk2 +2 

· · · yl+m . First, let k2≤ l . Then, we define  

δꞌ ((q, y1 y2 · · · yl ), a, Y ) = ((qꞌ , z1 z2 · · · zk yꞌ1 yꞌ2 · · · yꞌk2 yk2 +1 yk2 +2 · · · yl ), Y),  

if k + l≤ m, and  

δꞌ((q, y1 y2 · · · yl ), a, Y) = ((qꞌ , z1 z2 · · · zi ), (zi+1 zi+2 · · · zk yꞌ 1 yꞌ 2 · · · yꞌk2 yk2 +1 yk2 +2 · · · yl )Y),  

if k + l = m + i for i > 0. Now, let k2 > l. Then, k + l = k1 − k2 + l < k1  m and we define  

δꞌ((q, y1 y2 · · · yl ), a, Y) = ((qꞌ , z1 z2 · · · zk yꞌ 1 yꞌ 2 · · · yꞌl ), Y),  

with Yꞌ  = yꞌl+1 yꞌl+2 · · · yꞌk2 yk2 +1 yk2 +2 · · · yl+m .  
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In the last case, as many push as pop operations are performed in π . This case can be handled 

similarly.  

 The defined transitions are reversible, since the knowledge of the state qꞌ , the input 

symbol a ∈  Σ , which defines h(a), and the m topmost  stack symbols of M are suffcient to 

restore state q and the stack store of Mdue to the fact that π is reversible. Altogether, Mꞌ accepts 

h−1(L(M)) and is a REV-AA. The closure properties of the language families discussed are 

summarized in Table 1.  

 

3. Decidability questions  

Problems which are decidable for DAAs are decidable for REV-AAs as well. Therefore, 

emptiness, universality, equivalence, and regularity are decidable for REV-AAs. On the other 

hand, inclusion is known to be undecidable for DAAs. We now show that inclusion is 

undecidable for REV-AAs, too. To this end, we use a reduction from Post’s correspondence 

problem (PCP) which is known to be undecidable, [24]. Let Σ be an alphabet and an instance of 

the PCP be given by two lists α = u1 , u2 , . . . , uk and β = v 1 , v 2 , . . . , vk of words from Σ + . 

Furthermore, let A = {a1 ,a2 , . . . ,ak } be an alphabet with k symbols, Σ ∩ A = , and d = 

max{|ui|,|vi||1≤i≤k be the maximal length of words occurring in α or β . Now, consider two 

languages Lα and Lβ .  

 

Lα = {ui1 ui2 · · · uim $aim
d+2d+2am-1

d+2 · · · ai1
d+2   | m≥1 ,1≤ij ≤ k, 1≤j≤m}, 

Lβ     = {vi1 vi2…..vim $ aim
d+2 aim-1

d+2……ai1
d+2   | m≥1 ,1≤ij ≤ k, 1≤j≤m} 

 

Theorem6. The languages Lα and Lβ as well as their reversals RL and   
RL are accepted by REV-

AAs.  

Proof. We describe the construction of a REV-AA Mα accepting Lα . The construction for Lβ is 

identical. The idea of the construction is to stack the input onto the stack store until the symbol $ 

is read. Then, each block of d + 2 identical symbols ai is read while ui is popped from the stack 

store. In the remaining time up to the end of the block, which is counted in the states, the stack 

store remains unchanged. Then, the next block of the input and the next word on the stack store 

is processed. If an error occurs, the transitions remain undefined. Finally, an accepting state is 

entered when the stack store is empty up to ⊥ .  

For the detailed construction let Mα = Q , Σ ∪  A ∪  {$}, Σ ∪  {⊥}, δ,q0 , ⊥ , {qa }) and  

Q = {q0 , p, qa } ∪  {pi,j ,qi,j | 1 ≤ i ≤ k,   

1≤  j ≤ d}. For a ∈  Σ , aꞌ ∈  Σ ∪  {⊥}, 1≤  i≤  k, and ui = ui,1 ui,2 · · · ui,|u i | , we define  

 

δ (q0 , a, a ) = (q0 ,aa),  

δ (q0 , $,a) = (p,a),  

δ (p, ai , a) = (pi,1 , a),  

δ (pi, j , ai , a) = (pi, j+1 , λ) for 1 ≤j≤ |ui | − 1 if a = ui,|u i |− j +1 ,  
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δ (pi,|u i | , ai , aꞌ) = (qi ,|ui | , λ) if a = ui,1 ,  

δ (qi, j , ai , aꞌ) = (qi, j+1 , aꞌ) for |ui |≤ j≤  d − 1,  

δ (q i ,d , ai , aꞌ) = (p , aꞌ),  

δ (p, λ, ⊥ ) = (qa , ⊥ ).  

Automaton Mα is reversible, since in the backward computation the input makes sure in 

which way the stack store has to be restored. Additionally, the input carries the information of 

how many symbols have to be read before restoring the stack store. Obviously, Mα has exactly 

one accepting state and every accepting computation ends in a configuration with empty (up to 

⊥ ) stack store. By the discussion in Remark 1 we obtain that  RL  and  
RL  can be accepted by 

REV-AAs as well.   

Theorem 7. Let M1 and M2 be two REV-AAs. Then it is undecidable whether L(M1 ) ⊆ L(M2 ).  

 

Proof. We first show that it is undecidable to test whether L (M1) ∩ L (M2) is the empty set. 

Given an instance of the PCP we can construct due to Theorem 6 two REV-AAs whose 

intersection is empty if and only if the PCP has no solution. If we could decide the emptiness of 

the intersection, we could decide whether or not a PCP has a solution. Obviously, L(M1 ) ⊆ 

L(M2 ) if and only if L (M1 ) ∩ L (M2) = ø. By Theorem 1 we know that L(REV-AA) is closed 

under complementation. If we could decide the inclusion L(M1) ⊆ L (M2 ), then we could decide 

the emptiness of intersection as well. This is a contradiction.   

 

Theorem 8. Let M be a nondeterministic Aleshin type automaton. Then it is undecidable 

whether L (M) ∈  L (REV-AA).  

 

Proof. We consider an instance of the PCP and define the languages L1 = Lα #LR
β and L 2 = {w 

#wR | w ∈  (Σ ∪  A ∪  {$})* } ∩ Σ *$A*#A*$Σ * .  

Language L1 belongs to L (REV-AA) due to Theorem 6 and the closure under marked 

concatenation discussed in Remark 1. So, L1 is a deterministic context-free language. Clearly, L2 

is a deterministic context-free language as well. Due to the closure of the deterministic context-

free languages under complementation [1], we obtain that 21 LL   is context free. We will now 

show that 21 LL   belongs to L (REV-AA) if and only if the given instance of the PCP has no 

solution. If the instance has no solution, then L1 ∩ L2 =  and, thus, its complement 21 LL   is 

the regular language (Σ ∪  A ∪  {#, $})* , which belongs to L (REV-AA) due to the regular 

languages are strictly included in L(REV-AA). On the other hand, if 21 LL   belongs to L 

(REV-AA), then its complement L1 ∩ L2 belongs to L (REV-AA) as well. We have to show that 

the given instance of the PCP has no solution. By way of contradiction we assume that the 

instance has a solution. Then, L1 ∩ L2 is an infinite, context-free language. Let w = u1 u2 · · · um 

$am
d+2am-1

d+2 · · · a1
d+2 #a1

d+2a2
d+2 · · · am

d+2 $vmvm−1 ··· v 1 be a word in L1 ∩ L2 long enough 

such that the pumping lemma for context-free languages applies. Pumping leads to words which 
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are not in L1 ∩ L 2 and we obtain a contradiction.  

Now, if we could decide whether the context-free language  21 LL   belongs to L(REV-AA), 

then we could decide whether the given instance of the PCP has a solution which is a 

contradiction.   

 

The same problem of Theorem 8 for deterministic Aleshin type automata is open. 

However, we have the following decidable property which contrasts the result that there is no 

algorithm which decides whether, for example, a given cellular automaton or iterative array is 

reversible [6,7]. Following the discussion in [2], we will consider in the remainder of this section 

the size of a pushdown automaton as the length of its representation.  

 

Theorem 9. Let M be a deterministic Aleshin type automaton of size n. Then it is decidable in 

time O (n4) whether M is a REV-AA.  

 

Proof. In order to decide whether a given deterministic Aleshin type automaton M = (Q, Σ , Γ , 

δ,q0 , ⊥ , F) is reversible, in general, it is not sufficient to inspect the transition function. Whether 

a transition can be reversed depends on the information that is available after performing it. If 

this information is unique for all in-transitions to a state, then the transition can be reversed. For 

example, δ (q, a, Z) = (qꞌ , Zꞌ Z ) or δ (q, a, Z ) = (qꞌ , Zꞌ ) provides the state qꞌ , the input symbol 

a, and the topmost stack symbol Zꞌ . On the other hand, consider δ (q, a, Z) = (qꞌ , λ) which 

provides only the state q and the input symbol a. The necessary information is complemented by 

the second symbol on the stack store, which cannot be determined by inspecting the transition 

function only 

In order to cope with the problem, we first construct an equivalent DAA Mꞌ = (Q , Σ , Γꞌ , δꞌ ,q0 , 

⊥ , F), where Γꞌ = Γ 2 ∪  {⊥} and     (qꞌ , ⊥ ) if δ (q, a, ⊥ ) = (qꞌ , ⊥ ),  

δꞌ(q, a, ⊥ ) =               (qꞌ , (Z ⊥ )⊥ )        if δ (q,a, ⊥ ) = (qꞌ , Z ⊥ ),  

          (qꞌ , (Z Y 2 ))          if δ (q, a, Y 1 ) = (qꞌ , Z ),  

 

δꞌ (q,a, (Y 1 Y 2 )) =          (qꞌ , (Z Y 1 )(Y 1 Y 2 )) if δ (q, a, Y 1 )   = (qꞌ , Z Y1 ),  

         (qꞌ , λ)                      if δ (q, a, Y 1 ) = (qꞌ , λ).  

 

By construction there is a bijection ϕ between the configurations passed through by M and Mꞌ , 

where ϕ(v ,q, w , Z 1 Z 2 Z 3 · · · Zk ⊥ ) = (v ,q, w , (Z 1 Z 2 )(Z 2 Z 3 ) · · · (Zk−1 Zk )(Zk ⊥ )⊥ ). 

 

Moreover, M and Mꞌ have the same initial configurations, and a configuration ca of M is 

accepting if and only if ϕ (ca) is an accepting configuration of Mꞌ . Therefore, M and Maccept 

the same language. Furthermore, Mꞌ is of size O (n). Basically, the idea of the construction is to 

store information of the second stack symbol in the topmost stack symbol. The construction may 

introduce also transitions for situations that cannot appear. For example, if in any computation 
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there is never a Z on top of a Y in the stack  store, then the transition δꞌ (q, a, (ZY )) is useless. 

However, if a transition of the form δꞌ(q,a, (Y1 Y2 )) = (qꞌ , λ) is applied, then we do now have 

the necessary information to test for uniqueness after having performed the transition as 

mentioned above. That is, we know the state qꞌ , the input symbol a, and the topmost stack  

symbol Y2 . So, basically, it remains to be tested whether a transition is applied in some 

computation or whether it is useless.  

To this end, we label the transitions of δꞌ uniquely, say by the set of labels B = {l1,l2 , . . . ,lk }. 

Then we apply an old trick and consider words over the alphabet B. On input u ∈  B*   a DAA 

M  with all states final tries to imitate a computation of Mꞌ by applying in every step the 

transition whose label is currently read. If Mꞌ accepts some input u1 u2 · · · un , then thereis a 

computation (not necessarily accepting) of Mꞌ that uses the transitions u1 u2 · · · un in this order. 

If conversely there is a computation of Mꞌ that uses the transitions u1 u2 · · · un in this order, then 

u1 u2 · · · un is accepted by M  .So, in order to determine whether a transition with label li of Mꞌ is 

useful, it suffices to decide whether M accepts an input containingthe letter li. This decision can 

be done by testing the emptiness of the deterministic context-free language L ( M  ) ∩ B *li B * 

.Concerning the time complexity of identifying all useless transitions, we first observe that the 

size of   M and of each DAA M li accepting L ( M ) ∩ B *li B * is in O (n). To test the emptiness 

of some DAA M li , we have to convert M li to an equivalent context-free grammar and test its 

emptiness. According to [2] the conversion to an equivalent context-free grammar has time 

complexity O (n3).This implies that the time complexity of removing all useless transitions is in 

O(n4) 

Assume that Mꞌꞌ is constructed from Mꞌ by deleting all useless transitions. Clearly, Mꞌꞌ 

and M are equivalent and the size of  Mꞌꞌ is in O (n). Now, for any state we consider all in-

transitions and check whether the corresponding information after performing it (state, input 

symbol and pushdown symbol) is unique. If this is true for all states, then M is reversible, and 

irreversible otherwise. The latter test has time complexity O (n2). Thus, we obtain that the 

reversibility of M can be decided in O (n4 ) time.  

 

Corollary 3. Let M be a nondeterministic Aleshin type automaton of size n. Then it is decidable 

in time O (n4 ) whether M is a REV-AA.  

Proof. By inspecting the transition function one can decide whether or not M is a DAA. If the 

answer is yes, then it can be decided whether M is a REV-AA by Theorem 9. If M is not a DAA, 

then it cannot be a REV-AA. Since the inspection of the transition function can be done in O (n2) 

time, we obtain the time complexity claimed.  

 

Theorem 10. The decision problem whether a given deterministic Aleshin type automaton is a 

REV-AA is P-complete.  

Proof. By Theorem 9 the problem is in P. Its P-hardness is shown by reduction of the                 
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P-complete problem GEN discussed in [4]. Given a finite set X , a binary operation • on X 

(presented as a table), a subset S ⊆ X , and an element w ∈  X , GEN is the problem to decide 

whether w is contained in the smallest subset of X which contains S and is closed under the 

operation •.  

     For a given instance of GEN we construct a pushdown automaton M = {q0 ,q, f }, {e}, X ∪  

{⊥}, δ,q0 , ⊥ , { f }  , where  

(q, w ) ∈  δ (q0 , λ, ⊥ ),  

(f , ⊥ ) ∈  δ (q, λ, ⊥ ),  

(q, λ) ∈  δ (q, λ, x), if x ∈  S , and  

(q, yz) ∈  δ (q, λ, x), if x = y • z for some y, z ∈  X .  

The construction of M can be done in logarithmic space with regard to the instance of 

GEN. Moreover, L(M) =  if and only if w is not generated by S and, thus, does not belong to 

the smallest subset of X which contains S and is closed under the operation •.  

Next, M is transformed into a REV-AA Mꞌ such that L(M) =  if and only if L(Mꞌ ) =. To this 

end, we construct Mꞌ by labeling the transitions of M uniquely by some set of labels B , and 

consider words over the alphabet B as inputs. The DAA Mꞌ tries to imitate a computation of M 

by applying in every step the transition whose label is currently read. The resulting DAA Mꞌ is 

reversible since each input symbol indicates which transition of M has to be chosen by the 

reverse transition function of Mꞌ. The construction of Mꞌ can be done in logarithmic space. 

Moreover, L(M) = ø if and only if L (Mꞌ ) = .  

 Finally, we construct another DAA Mꞌꞌ by concatenating the language L = {anbn | n ≥0} 

to L (Mꞌ ). To this end, appropriate transitions from the state f to an initial configuration of a 

DAA accepting L have to be added. Again, the construction of Mꞌꞌ can be done in logarithmic 

space.  

we know that L cannot be accepted by any REV-AA. So, Mꞌꞌ is not a REV-AA if L(Mꞌ) ≠ 

. On the other hand, if L (Mꞌ) = , then Mꞌꞌ is reversible, since the simulation of Mꞌ is reversible 

by construction, and the configuration with state f leading to a possibly non-reversible 

computation never appears. Altogether, we obtain that L (Mꞌ) ≠ if and only if Mꞌꞌ is a REV-AA. 

This concludes the reduction and shows the P-hardness of the given problem. W  

Corollary. The decision problem whether a given nondeterministic Aleshin type automaton is a 

REV-AA is P-complete.  

 

4. Conclusion  

 

All deterministic context-free languages can be parsed in linear time using the well-

known parsing algorithms for grammars. Thus, reversible deterministic context-free languages 

can be parsed in linear time as well. But taking into account the constants arising in the time 

complexity, it might be the case that reversible deterministic context-free languages can be 

parsed in less time.  
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